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Abstract

Using the recently developed method of recurrence relations, 4

we have st-U"ied the time and frequency dependent behavior of the

two dimensional electronic system at long wavelengths. Several -

families of autocorrelation functions including the relaxation

and memory functions are obtained exactly. In addition, other L-"4
linear response quantities e.g. the density-density response

function and dynamic structure factor are obtained. This work.

contains a detailed application of the method of recurrence

relations.
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I. Introduction

The electron gas has had a long history as a model for

metals and has attracted considerable theoretical efforts over

1the years. Interest in this model has been substantially

heightened recently by the physical realization of an essentially

two dimensional electronic system in MOS, heterostructures and

superlattices.2,3 In addition, the realization that many-body

effects are in some ways more pronounced in two dimensions than

in three dimensions has further given impetus especially to

theoretical efforts. The static properties of the two dimensional

version of the electron gas model have already been extensively

studied.4 The correlation efiergy, for example, has been calcu-

lated by techniques which are basically similar to those employed

5-10 T y c e sfor the three dimensional case. The dynamic properties have

also received some attention, but largely limited to the frequency-

dependent density response function calculated by RPA and other

perturbative techniques.II 14  To our knowledge, there are as yet

no measurements of the dynamic structure factor with which these

* calculations can be compared.

In the two dimensional electron gas model, one has an

attractive possibility of finding exact time and frequency

dependent solutions, normally precluded in the three dimensional

*: model. Such solutions can contribute to our understanding of

* nonlinear behavior of fluids, e.g., memory effects and long

time tails in the velocity autocorrelation function. These .. "

15. studies are attracting considerable current activities.

The time evolution of a dynamical variable e.g., density-

2• . .- . * *
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fluctuation operator may be studied by the method of recurrence

relations.16 '17 Given certain static properties known as the

recurrants, one can obtain the exact time-dependent behavior of

the density fluctuations, from which the associated relaxation .. -"

and Memory functions as well as the random force.18 This method

has already been successfully applied to several formal and

19physical models. We present here a complete account of the

time and frequency dependent behavior of the two dimensional

electron gas at long wavelengths. A preliminary account of this

work was previously reported.20
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II. Time Evolution of Density Fluctuations in the Electron Gas at T=O -

We consider the two dimensional electron gas model defined

by the Hamiltonian H

-;+ Vk + +k c Cq Cc -H + V (1) " p q

where c + & ck are, respectively, the creation and annihilation .°.
~• . ". 1"

k k ~ ~ ~ ~ p2 2
operators at wave vector k, = k /2m, Vk 2re 2/k, where m and e

are, respectively, the electron mass and charge, 1 = . Our

system is imposed under an external perturbing potential of the

following form:

H = 3' Pk(t) Pk e i't (2)

where -. is the Fourier comp6nent of the external electric field

sufficiently small as to permit the use of linear respon~e theory,

w is the frequency of the field, Pk is the density fluctuation

operator defined as"--i

k  p p-k  (3a)

and
Ht. -.. ,

Pk(t) = eiHt Pk e - i Ht (3b)

with pk(0) = Pk Given an explicit knowledge of time dependence

in pk(t), one can proceed to calculate e.g. relaxation function

(Pk(t), rk )/(P from which other physical quantities via

linear-response relations. Here the inner product means the

Kubo scalar product (see sec. III).

It is important to note that the calculations of time

evolution are carried out with the static properties e.g. k fixed

at some given value. In this work, we shall confine ourselves

to k/kF<< 1, where kF is the Fermi wave vector, such that the

density fluctuations are those which occur very near the Fermi

4



F 7--7 go 7. WIV r

surface. Physically it means that excitations in (1) are limited

to electron-hole pairs only (i.e., no multipair excitations

allowed). In this static regime (k/kF<< 1 and T = 0) the static

susceptibility (pk' Pk and other static quantities of interest

are known exactly.

I 5
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III. Method of Recurrence Relations

If the electron gas is momentarily perturbed by an external

field coupled to density fluctuations (2) in accordance with linear

response theory, the system will undergo a relaxation process.

The time evolution of density fluctuations satisfies the

Heisenberg equation of motion viz.,

Pk(t) = i [H, Pk(t)] (4)
18

One can put it in the form of the generalized Langevin equation--
t

d;k(t)/dt + fdt'k ' Pk(t) = Fk(t) (5)
0

where M and F are, respectively the memory function and generalized

random force. This form has the advantage of introducing the two

physical quantities. The formal solution for the time evolution

* 16
of Pis given by the method of recurrence relationsIk

According to this method, one constructs S a d-dimensional

Hilbert space of Pk spanned by a set of orthogonal basis vectors
f f "f This physical space S is an abstract space realized

o 1- d-"l*

by the Kubo scalar product

tE -uH + +
MY) f du <e X e-  Y > -<X><Y > (6)

0

for ever*' X, YCS, where <...> denotes the canonical ensemble

average,+ Hermitian conjugation and B is the inverse temperature.

The method of recurrence relations shows that in such a space

the basis vectors satisfy the following recurrence relations (RRI):

f V f A V O < <v <d-l (7)

where f) = i [H, f 1 (8)
V

and

V A. f " V)/(= fv 3fl )  (9)

Here A.., a relative norm, will be referred to as the vth recurrant.

6



The boundary conditions require that f_ 0 & o E 1.

By choosing f appropriately, one can readily obtain all
0

other fV's by the RRI. Given these basis vectors for S, the

solution of the Heisenberg equation of motion for pk(t) may

be formally given an orthogonal expansion as
d- 1

Pk(t) = Z a(t)f (10)k v1j=: 0 ..-

where a (t)'s are real time-dependent functions i.e., auto-

correlation functions. If in fact one chooses fo =k' ao(t)

corresponds to the relaxation function of linear response theory.

The most important property for these functions is that they

satis.y a ie6urrence relation (RRII):

A 1 a+(t)= - a (t) + al(t), 0 < v < d-i (11)

where a (t) = da (t)/dt and a l(t) 0. With the choice fo =

the boundary conditions are that a (t=O) = 1, a (t=O) = 0 if v> 1.
0

The above recurrence relation is realized by the recurrants A 's,

which are static properties. For the two dimensional gas at long

wavelengths (k/kF<< 1) and T = 0 they are exactly calculable.

Hence, it may be possible to solve the RRII to obtain the auto-

correlation functions a (t).

The random force for P is a vector in a subspace of S.

It may also be given an orthogonal expansion

d-i

Fk(t) = [ b (t) f (12)
v=l

where b (t) 's are real time-dependent functions, of which bl(t)

is related to the memory function Mk(t) = A1 b1 (t). These auto-

correlation functions also satisfy a recurrence relation like RRII:

7
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- -- -

A b +l(t)= -b(t) +bi (t), 1 <V< d-l. (13)

Observe that A1 does not enter into (13). Hence, b (t's do

not depend on the first recurrant. The boundary conditions

require that bl(t=O) = 1 & b (t=O) = 0 if v > 2. The two

families of autocorrelation functions are related by a convolution -

relation

a (t) = convol. (b (t) * a (t)) , 1< v <d-1. (14)
V V 0

Hence, if a (t) is known, a (t) is knowable by the RRII and
0 V

bl(t) via convolution. The method of recurrence relations is

exact. If the recurrants are exactly given in some static regime,

the RRII yields exact time dependence in that static regime.

For example, the response function, one of the autocoerrelations

a t)'s, satisfies the moment sum rules exactly to all orders
V

in the static regime where the recurrants are valid.

* . - * * *." -



IV. Basis Vectors and Norms

By choosing fo = Pk we can directly obtain from the RRI all

other basis vectors spanning S:

f 0= Pk (15a)

f = (15b)

f2 =  P (15c)
2 ~k+A1 k

f =u5: + (A + ) " (15d)3 = uk  .-.-

f4 = tk + (-A + A2 +1 3 ) k +AI A3 Pk (15e)

f5 =  . + (AI a A+a+A4)'* + (A A + A A + A A (15f)

etc, where the number of dots or simply the number above po refers

to the number of times the commutator of pk with H is beihg nested

."- e.g., Hk i [, k  = [H, [H, [H, Ok] =

The norms of these vectors are:

(fo o) = 0 = Xk (16a) L:.-'.i

1 k (k 2  (16b) .,.
(f 2'f2) = ( kj' k)  -( 1 ('k' k)  (16c),-..'

(fk' 'k) - + A2 + A3) (Qk' P'k) +AIA3 (Pk" k (16e)

(fs. -5 k  k 1l + A 2 + A 3 + A 4 ) Ok . bk) (16ff)

+ (AIA 3+AIA4 +A 2 A4 1 ('k'k )

m l) (n l
etc., where we have used the identity (P T) = _ m4l) = - nl, r-i

n or m > 1.

Observe that to calculate f or its norm, we need to know
V

the norms of f 1 , ' f- 2, " fo Thus, if we calculate the norms

successively starting with the basal vector f 0 , we can obtain

all the basis vectors and their norms explicitly. For the

electron gas at long wavelengths, these norms can be obtained

9



by working out the nested commutators of pk and evaluating the

"* inner products at T = 0. Observe also that 5k = i[H,0k = i [HO ,

(o) where H is the noninteracting part of H. As a

" result, the noninteracting or ideal Hamiltonian will have an

important input in the behavior of the recurrants.

Ideal system

Here we express k in units of k such that cF 1/2m
F

where EF is the Fermi energy in two dimensions. In these units,

the norms for the two dimensional electron gas are given below:
(o)= (o)=: '

(f 0 1f 0 ) = Xk = m/iT, k< 2 (17a)(fl, fl) (o) k2  i
() k= EF/, (17b)

ff (o)(k 4 + k6  /C3 (17c)(f~2' f 2 )  = + ) F ".I

(f 3 'f 3 ) (°)=(k6 + 4k8 + 0(kl0 )) F/ (17d)

(f,f(0)=(k8 + 10k1 0 + 0(k1 2 )) 7 (17e)

(ff) (0)=(kl0 +20k 1 2 + 0(k 1 4)) f9/7 (17f)

* etc. For the recurrants valid in the static regime of k<< 1, we

shall retain only the leading order in k:
(o) =2 2  F2  .

S 2k F (18a)

(0 (o) 4(o) k2  F2. - (18b)
A2( = -3 4 "F..

In the two dimensional ideal electron gas at long wave-

lengths the norms are finite and non-vanishing for all v's. Hence,

the dimensionality of the Hilbert space of k is infinite (d- ).

Interactinq systems

For the static regime of small k, we find that the norms are

. to the leading order in k as follows:

0 k O)  1  + Vk>k ( )  (19a)

(f , ) = (f f '0 >'()v ' P V ' (19b).-.

10
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* Hence, to the leading order in k,

A 2A + r' (20a)

A 0=A, v > 1 (20b)
C 12 2 r

*where (w = (w ) k/rn, where p is the number density.
p

For the two dimensional interacting electron gas at long wave-

lengths the dimensionality of the Hilbert space of Pk is also

infinite.

r 1



V. Autocorrelation Functions for Ideal System

Using the recurrants(18a,b) obtained for the ideal

electron gas, we can now obtain the autocorrelation functions

a (o) (t) & b (o) (t) from the RRI valid at long wavelengths.

Defining A = 2 j , we can decompose the RRII as follows: 7

2 (0) (0) .- 0 Wa (t) A 0 M(21a
aV+I (t) =- (t). + a (t), v > 1. (21b)

V ' -1

We look for a function which satisfies the above equations. Let

a ()(t) = )V U~ h (Xt) (22)
VV

where X is a scale factor, U, is a coefficient, and h is a
V V

function, all to be determined. The boundary condition a() (t=O) = 1

imposes that U0 = 1 & h (0) - i. Substituting (22) into (21a,b)
0

we get

A i- 2  l hl = _ h0  (23a)

2 X- 2 (U ++/U _I) h V - (U /U _I1 h) + h _I , v > 1, (23b)

where h' = dh(x)/dx. Clearly the scale factor is X =V, which

somewhat simplifies (23a,b) to

U1 h I = - h' (24a)
0

S(Uv+I/U_ h I_ hh+l h=' + h_ I , v > 1. (24b)

Now the above may be compared with the recurrence relation for
21"-'

- the Bessel function J 21

=-j' (25a)

J+l 2 JI + J V > (25b)

If U 2', (24a,b) become identically reduced to (25a,b). Hence,

(o) v -V
a V ) (t) = 2 '- J (wt), v >0. (26)

Observe that the solution satisfies the boundary condition
(o) _-

that a (t=0) = 0, v > 1. Thus the RRII realized by the

12
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recurrants of the two dimensional ideal electron gas is isomorphic

to the recurrence relation for the Bessel functions. The short(o)t)i
and long time behavior of the relaxation functions a ( t) is

V

given directly by the asymptotic properties of the Bessel

functions e.g.

a0  (t -) t - cos(,gt - h7). (27)

For dynamical analysis it will be useful to have the

i Laplace transform of the relaxation functions:

a () (z) = [ lav(o) (t)] (28)

where T is the Laplace transform operator.

The autocorrelation functions b (o) (t) can be obtained by

* the convolution eq. (14) which when Laplace-transformed takes

a simple form:

by(z) = a (z)/ao(z) (29)

"- where b (z) = T [b (t)], v > 1. Using (28) we obtain directly,

V
.. (o)(z (( + z),-2>1

..- , 2v -2 z 2 2 _z, (30) [ [

* Hence,

() (o)
by (o) (t) - [b v  (z)]

1-v 22
.;- =2 .]-[.V-

The memory function for the two dimensional ideal electron gas

becomes
(0) = 1 () J (jt/it) (32).

M (t) (A b (t)2

ct- s3 / 2 COS(,t - 3-/4) if t co . (32a

Other linear response quantities e.g., the response function

" Xk(w), the dynamic structure factor Sk(M) can now be directly

obtained from the autocorrelation functions. From linear

" response tneory (nencefortn suppressing k dependence)

13
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"-* X (t) X(t)/X = - a ao(t) , t >0. (33)

'" Hence,

an (0) (t) =i i Pt)i(34)
:'i " a n d [

,-" (0) (w0)-T [X ( 0) (t)]i
~~z=iw _

1 - i N 2 W 2)-h 0 < W < (35a)

-1 ( 2 )- , I < W < . (35b)

This is equivalent to the well known result due to Stern" at

long wavelengths. Also since n S(w) = - Im X(z =iw), we obtain

directly

2 2 0

W (,,I w r 0 < W < V (36a)

-0 , W < <G P (36b)

Observe that S( ° ) (w) has a power law singularity at w=-, .

suggestive of an apparent collective excitation. The dynamic

structure factor satisfies the standard moment sum rules- to all

orders at long wavelengths. In this static regime the time

. evolution in the two dimensional ideal electron gas is thus

- exactly and completely characterized.

14
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11

VI. Autocorrelation Function for Interacting System

It was shown that for the two dimensional interacting

electron gas at long wavelengths AV= A (o) v > 2, although

1 v (see eq. 20a,b). Since the autocorrelation

functions b (t) depend not on the first recurrants but on ["'

others onlv we must have b,,(t) = b (t), v > 1. We take

advantage of this simplification to obtain the autocorrelation -

functions a (t) as follows: By taking the Laplace transform

of.the RRII, we get for v = 1,

AV b 1 (z) = (a o(z))-- z. (37)~(0)

Using (30) for b.l(Z) = bI  (z), we get

2 2 h(z + u2 ) - (1 s) z (38)
( '2 2

where s A 1 /A1 = 2/(.2 + 2r) (39)
( - s)2 2 + (x2 + (40)

where x2 rlu. Note that 0 <s <1 and hence 0 ac <1. In both

cases, the upper bound is reached in the ideal limit. By taking

an inverse transform we have
2 )2

(z2 + P -(1 - s)z
ao(t) S11 zta s-. dz e 2t2 2(41)

c 12 + az

where the contour c runs along the imaginary axis. There are

two types of singularities on the imaginary axis. There is a cut

from z = - ip to z = i;. In addition, there are a pair of

isolated poles beyond the cut at z = ± ia-  P ± iw . In
p

- Appendix A we have evaluated this integral:

15
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00.J
a (t) (A ((-a)n (,/,t)2n [J(lit)/Ptl + A cos apt (42)

n=0 .%

where

As = 1 - (1 - a)' (42a)

Ap = 2 [(1 - a) - (1 - a)]/a. (42b)

We can now check various boundary conditions on a (t).

In Appendix B, we show that a (t=0) = 1. In Appendix C, we
0

show a0 t) = Jo Cut) at the ideal limit a= 1. It is easy to show
02

that as a- 0, ao(t) = (1 - ;cL) cos wpt + ha Jl(pt)/pt + 0 (a

For t -, a (t) t 3 2 cos (-Pt - 37/4) + A cos ri t. Also given
0 p p

ao(t), the other a (t)'s can be obtained from it with successive

applications of the RRII, e.g., Alal(t) (t) a

" + a (t), etc.

In Appendix D, we have obtained a closed form expression

for the Fourier transform of a (t) using (42):
0

A (2 2)

Lo)=' < W< < 1 (43a),0 1 2 2)". -2

.. I. ,Ij-a

= Ap[6lc, - p) + 6(w'+ pl], p < W < . (43b)
p p p

In Appendix E, we have obtained the response function

*Xk(W) -Xk (W)/Xk using (42): Again suppressing k dependence,

2
As (I- a)W

Re (w) = 1 + 2 2 , 0 < W < p (44a) 4

As [(1 - 2) (1 - 2 21 2
=1+ /W W < w < a (44b)

A ( 2  2)

22
-I ( = s -0 < W < 11 (45a) .iim- I,2 .~~::

- irA [6 1, - Wip) + 6(w + )], u < < Co. (45b)
p p p



-%

Eqs. (43) and (45) satisfy the well-known relation:
2 % "

Im (M) = - Tw a (w). For w - 0, Re $(w) = 1 + 0 (w ) and for
0

w , Re (W) = O( - 2 as required. In the high frequency

12regime, 1m (w) agrees with Rajagopal. For a = 1, eqs. 43-45
"m.-

all reduce to the ideal results of sec. V. A

The dynamic structure factor can be obtained by the relation

-n S(M) Im X (). Hence, directly from (45) we have

S (W) E s(W)/x -

2 2A W (P2
2 2 ' 0 < W < 11 (46a)

= " Ap w[( - Wp) + (W+Wp)], 1i < W < (46b)
p p p

The general shape of the dynamic structure factor resembles the

three dimensional version at the same small k, consisting of a

broad single-particle spectrum and a sharp collective peak.

However, the amplitude of the two dimensional single-particle

spectrum is "soft", i.e., it grows with a. Hence, there is an

interesting crossover behavior going from interacting to ideal,

which is unique to two dimensions at small k.23  The total area

under the single-particle spectrum remains finite at all values

of a including a = 1. The dynamic structure factor (46) satisfies

the moment sum rules to all orders exactly as in the ideal case.

17
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VII. Intrinsic Conductivity

At a low temperature the frequency-dependent conductivity

a (w) is generally understood to be largely due to impurities

present in the system. The electron-electron interaction con-

tributes to it hardly at all. This conventional notion ignores

the possible existence of random currents arising entirely from

density fluctuations. A random current can contribute to the

frequency-dependent conductivity as may be seen from the Kubo

conductivity formula, which may be termed an intrinsic con-

ductivity. It appears that Kubo had speculated upon the

24existence of an intrinsic conductivity some years ago.

The density fluctuationi and the total current Jk are

connected by the continuity equation,
Pk(t) =- ik. jk(t) (47)

where the total current Jk includes a random current jk Kubo 2 4

showed that the random current is associated with the random

force Fk(t) such that

ikr(t) = Fk(t) (48)"

Since our system contains no impurities, the Kubo formula assumes

the following form:
r -tt jk r )  kr , k ) .'

ak(w) = e 2 Jdt e rJk (t) /(rj (49)

Hence, usinc (48) one can calculate the intrinsic conductivity

present in a pure, homogeneous system if the random force is

known. This contribution must presumably be added to the con-

ventional mechanisms to obtain the total frequency-dependent

conductivity.

18 ........................................................



Using (13), (15), and (31), we can readily evaluate the

random current: Suppressing k-dependence,

(r (t) , jr)/(j r jr) = b (t) = 2 1 (lit)/Al t (50)

2
Hence, writing M= aw (w)/c, where a =2ire pimp, we obtain

2 2Re a M~ (P - w)/u, 0 < W < I 51

-0, p< ~o<

-IM a ( W =t/p, 0 < W <

=P O+(W2 2 ) 1 p < W < ~.(52)

The real Partv of the conductivity satisfies the conductivity

sum rule:2

d,- Re ak(w) 7 e2  /2 (53
0

We note that the intrinsic conductivity exists in low

frequencies only, abruptly vanishing beyond a critical frequency

W= LJ=L (see Re ak (w)). Detecting the intrinsic conductivityck
25

*raises an interesting possibility. In an impure system, e.g.,

metals, in addition to the intrinsic conductivity there is the *

contribution from impurity scattering. Ordinarily the latter is

- given by the Drude formula which is a high frequency approximation.

* Nonsmooth behavior in the vicinity of w in an impure system would

be an indication of merging of the two different physical mechanisms.
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VIII. Dynamic RPA

It is well known that the response function may be put in

the form

()/(i + Ak()W) (54)
)(k( - k (o + () Xk(o

where Xk(0) (w) is the response function due to H and Ak(W) is.k 0: k
some function of V (see (1)). Various dynamic RPA theories are

26equivalent to taking Ak(w) = Ak(0)-=Ak. For example, Ak Vk

gives the simple RPA and A = (l - GO gives the generalized
k vkl-Gkgiethgeraid 27RPA, where G is a local field term. For k<<l, G % 0. Hence,

at long wavelengths the two dynamic RPA theories are essentially

the same.

Taking (a) to be frequency-independent is clearly an

approximation, the validity of which may very well depend on

the static regime. Several people 28-31 have obtained asymptotic

conditions in three dimensions for Ak( ) or equivalently for

G(w), where = Vk (l - ( )), sometimes referred to as

a dynamic local field term. There are otherwise no exact

general expressions known. Using the method of recurrence

relations we have recently derived an expression for Ak(z=iw):32

Suppressing k dependence

A [ _ 1 [ (b W ) (o) (z))- '

, + )(z). (55)

The first bracketed term A is z-independent. In general,
(0 (0).(o)%

b1 (Z) W bl (z) owing to the fact that A A (o), V v > 2. A

change in the memory function when interaction is turned on makes

the local field term frequency-dependent.

20
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In the two dimensional electron gas at long wavelengths,.

we have shown that b1 (z) = b() (z) , since AV  , v > 2

(see sec. VI). That is, when density fluctuations are confined

to the vicinity of the Fermi surface, the memory function is

unaffected by the electron-electron interaction. Hence, in this

static re-ime i.e., k<<l, Ak(w) = Ak and the dynamic RPA theories

are valid. This accounts for the RPA work of Holas et al.
3 3
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IX. Discussion

The method of recurrence relations treats the time evolution

of dynamical variables as a geometric problem in Hilbert space.

In this approach, the recurrants are basic elements of a realized

Hilbert space whose structure contains the possible time evolu-

tion. The recurrence relations RRI and II are merely mathe-

matical expressions of this geometric picture.

For the two dimensional electron gas at long wavelengths,

the recurrants assume a very simple form making the structure

of the Hilbert space very elementary. As a result, we were

able to deduce an exact solution for the time evolution of

density fluctuations occurring near the Fermi surface. Using

this solution, we have also obtained other physical quantities
r -

via linear response relations. In some other static regimes

e.g., k kF, the recurrants should have some other forms.

Hence, we expect the time evolution of density fluctuations to

be different.

Even when confined to the vicinity of the Fermi surface,

the density fluctuations show persistent memory effects. There

thus exists a random current and there is an intrinsic con-

ductivity. Remarkably, the memory is shaped by quantum

fluctuations and not by the electron-electron interaction.

This has an unexpected consequence that the dynamic RPA theories

are exactly valid in this static regime.

The time evolution of density fluctuations may be regarded

as a Fermi sphere undergoing a restoring motion due to a slight

initial displacement in momentum space. In the two dimensional

22
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electron gas there are an infinite degrees of freedom for such

a relaxation, giving rise to an infinite dimensions for the

corresponding Hilbert space. The resulting density fluctuations ."

are electron-hole scattering processes on which a collective

process is superimposed. These processes are dimension-sensitive.

In one dimensional electron gas, for example, the restoring

motion is one dimensional and the single-particle and collective

processes are bound together. For this system, the Hilbert

space is also finite-dimensional making the relaxation always

oscillator;.

23
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Appendix A. Relaxation function

We shall now evaluate the integration given below:

2 2
a (t) - f dz ezt z+j)-(-~ (Al) ..02r i 2 2

Since ca<l, there are isolated poles at z =±lipa += ±ip which

are outside the cut bounded by z = ±iu4 on the imaginary axis. Hence

the contributions from the isolated poles are straightforward to

evaluate. The residue at z =±iw is:
p

S/22 [/ j/ (1-s)-) e [ f/1-a -(l-a)]e t A2
p

The integration about contour c containing the cut is as follows:

2 2
s/27i,:'f dz et(i +z)-

2 2

= ~- d2 227 [+v 2  _,2 4 ' 4** iyt

U a (a_) 2 +a 2 y
s/-. f dy Ij -y [l --7~( at 4 a) leiy

2
s 2l a+ J 1 ~t/k (A3)

where w,%e have used an intearal representation of the BessPI

function J

Combining the above results we have with the definitions (42a,b)

(t) A (Lt)/,,t + A Cos w t. (M4)
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Appendix B.. Proof- that a (t0O) 1

We shall consider t-*O in our solution. for a 0(t) found in -

Appendix A:

V 2 va (t A (-t) (- ) J(p~t)/iut + A Cos w t. (B)0 5V=O ap.t 1P P

Using the expansion formula, we have

J 1(z)/z c 2k O (B2) -

where

k 2k+1Ck (2 k!(k+l)!). (B3)

Hence,

S2 
(B4))/#~)/ = 2v! c (B4

Substituting these results in (Bi) ,we obtain

Now one can show that

v 0 2 v!(v+l) C

Using As= 1 -T a and A=2(/1~ a (1 -a))/t, we find

a0 (0) 1.
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Appendix C. Proof that a (t)_=a ()(t) when a =1
0 - 0

We shall consider L-~l in our solution for a0 (t) given below:

ao(t) =As V t--) 2v J 1Tvit)/'pt + A~ cos wAit. (Cl)

For a-1l, we can write setting As= 1 and A =0,

2k
a 0(t) d k d(a-1l) (lit) (C2)

k 0

Although d (a~) is complicated, it becomes simple when a =1:

dk(1) =(_)k/ (2 2k (k! )2 ). (C3)

Hence,
co k 2k

lim a Wt - (t) = J (t) (C4)
a-.lk=O 2 k (k!)

We recall that a(0) (t) = (- it) , completing our prvof.
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Appendix D. Frequency-Dependent Relaxation Function

We shall first calculate the frequency-dependent relaxation

function due to single-particle excitations aS () via the formula
0

s C Liwt - e ItI s
a 0(, = 1/27- j dt e a (t) (DI)

where -0. Using (BI), we have

S ( 2) v (2v)ao() = As/27T - (D2) "- 'L

n=0

where

~(2v) - ( )2v f dte - ' t -e (l (t)/j1it, (D3)

and p (o) 2 - 2  - ) 0 ,

= 0 , (D4)
(2v)" 2v

Now integrating by parts, we get ¢(2v) = i 2v Hence, using

these results we obtain directly

aS() A (2_ 2 (i- 2 2) 0<w<

=0 U<W<0 (D5)

.p

The relaxation function due to the plasmon excitations a- (W) is0

straightforward:

aP 1/2 A (.(.~)+ S(w,+w )(D6)
o p p p

Since /a = /a, where a<l, the plasmon contributes only for
p.

:................................



*Appendix E. The Response Function k(w)

We shall use the well-known relation given below to calculate

the response function from the relaxation function,

I =l iWf dt e-~ - ta (t) (l
00

where £-O. From our solut-ion, we can write:

a (t) F A M(t) + A N(t). (E2)
0 S DP'

*one can im-nediately show that

N 2) k + r M W) _'0 +,-,l (E3)
p *2 r p

*where W.= To calculate M(w) , we first define

-iWt -Et 
2 2v

(u)=f dt e (- 1 .t/t(E4)
0 aut 1

M(~ 2,)(c)' (E5)
n= 3

Now integrating by parts, we find a recurrence relation for r's:__

2v-2

where a = 2-, (; t) /ut. The above recurrence relation can9 2,,, t

be used to sun- (E5). By substituting (E6) in (E5), we get

02

or

1 (7 + iaw (-a)\ V r (EB)
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The sum has been already carried out (see Appendix B). Also P.

can be evaluated:

2 2 /, 2 U<<1
r ) -

= -i( - /727 / l71 2 ,P<W<. (E9)"- .

Together

-i 2"1 2 2 0 U
M = ( 2 ( - i' 72)

02) .-i(~ -w a)

2 2 1
(_2 W VIi (/ -, - v - L-- ) , <W< . (E10) -"-''

Combining (E3) and (El0), we get

Re. 1+wA Im M + A pIm Ngm.q4

s p

2/2 2 )

a1 A -- w )5

22 2 2
I + A + (U.1 w ) j<w<- (Ell)

where we have used A = 2A -t -/a. Similarly,p s .' .

S-im = A Re M + A Re N

A W /2- 2/(.2-2)0<is

= A w($(- ) + 6(W )), +< <W" (E12)

Observe that our results satisfy the relationship Im -7a o
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